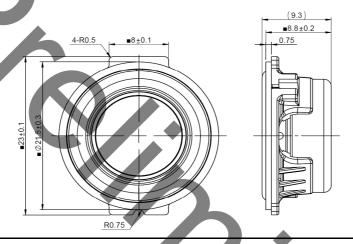
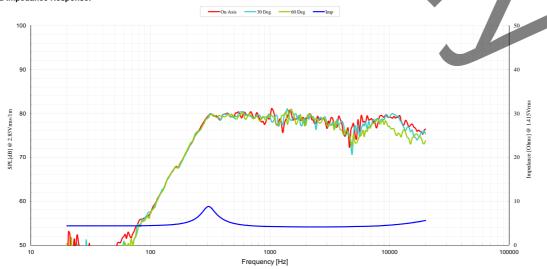


Model Number: PMT-20N12AL04-04
Product Line: Peerless Silver
Revision: Rev 2_0
Date: 2013-2-22



Product Description:

This 12mm 4Ω compact Premium Micro Transducer is designed for computer, television array, and similar applications. It features a neodymium-iron-boron magnet, a light aluminium cone, and a high-temperature polycarbonate frame. The PMT family's transducers feature low resonant frequencies and a full range bandwidth.


Mechanical 2D Drawing:

Specifications:

DC Resistance	R _{evc}	Ω	3.6	±7.5%	Energy Bandwidth Product	EBP	(1/Q _{es})⋅f _s	149
Minimum Impedance	Z_{min}	Ω	4.1	±7.5%	Moving Mass	M _{ms}	g	0.20
Voice Coil Inductance	L _e	mΗ	0.03		Suspension Compliance	-C _{ms}	um/N	1003.0
Resonant Frequency	fs	Hz	359	±15%	Effective Cone Diameter	D	cm	1.8
Mechanical Q Factor	Q _{ms}	-	2.8		Effective Piston Area	SD	cm ²	2.5
Electrical Q Factor	Q _{es}	-	2.41		Equivalent Volume	Vas	L	0.009
Total Q Factor	Q_{ts}	-	1.26		Motor Force Factor	BL	T⋅m	0.89
Ratio f _s / Q _{ts}	F	f_s / Q_{ts}	284		Motor Efficiency Factor	β	$(T-m^2)/\Omega$	0.19
Half Space Sensitivity @ 2.83V	dB@2.83V/1m	dB	79.5	±1.0 1	Voice Coil Former Material	VC_{fm}	. `	KSV
Sensitivity @ 1W/1m	1W/1m	dB	76.6	±1.0 1	Voice Coil Inner Diameter	VC _d	mm	12.00
					Gap Height	Gh	mm	1.00
Rated Noise Power (IEC 2685 18.1)	Р	W	1.0		Maximum Linear Excursion	X_{max}	mm	0.40
Test Spectrum Bandwidth	350~20KHz		12 dB/Oct		Ferrofluid Type	FF		APG834
					Transducer Size		mm	12.0
iston Band Sensitivity Tolerance					Transducer Mass	-	Kg	0.008
							4	

Frequency and Impedance Response:

